Theory of Computation

2023--2024 Fall
Zeynep Altan

Types of Theory of Computation

\square Automata Theory -

* Game of Life- Cellular Automaton - British mathematician John Horton Conway 1970
\checkmark Turing Complete - no physical system can have infinite memory, but if the limitation of finite memory is ignored, most programming languages are Turing-complete.

\square Formal Language

\square Computability theory
\square Complexity theory

Automata Theory

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine (FSM)

Automata theory

Boolean Algebra Truth Table Logic Diagram

Basic terms in Automata Theory

Symbols: These are either individual objects or separate entities. These can be any letter, alphabet or any picture.
Strings: These are a finite collection of symbols from the alphabet, and are denoted by w .
Language: A collection of appropriate strings is called a language. A language can be Finite or Infinite.

Automata Theory

How a vending machine works?

Vending machine room seen in
Hokkaido, Japan 2004

How to design a vending machine?
\rightarrow Use a finite automaton!

Automata Theory

An example: Assumptions (for simplicity) Only 5-L and 10-L are used.
Only drinks all of 20 L are sold.

Requiring "memory" called "states" for the design.

$10 \longrightarrow 5$ is returned as "output" (not shown)
(20) Final state

Vending Machine Autamaton

The states of Deterministic Finite Automata (DFA) for Vending Machines include:
$\mathrm{Q}=\{\$ 0.00, \$ 0.25, \$ 0.50, \$ 0.75, \$ 1.00, \$ 1.25, \$ 1.50, \$ 1.75, \$ 2.00\}$ (states)
$\Sigma=\{\$ 0.25, \$ 1.00$, select $\}$ is the alphabet
$\mathrm{q}_{0}=\$ 0.00$ is the start state
$A=\emptyset$ is the set of accept states

Vending Machine

Other Two Applications of Theory of Computation

\square Entire Universe
*model with a Automata Machine
\checkmark Theory of Computation

* similar to existing theories in Physics
https://www.bristol.ac.uk/maths/research/highlights/riemann-hypothesis/
\square Complexities in Natural Selection in Biology -Automata Theory

Automata Theory

\square Three major models of automata

- generator --- with output and without input
- acceptor --- with input and without output
- transducer --- both with input and with output

transducer

Automata Theory Model Type I: Generator

\square "natural language" grammar
(generating "sentences" spoken by people)
\square reception robot
(speaking organized words and sentences)
\square context-free grammar

Reception robot
--- Expo 2005
(generating strings of symbols)

Automata Theory Model Type II: Acceptor

\square digital lock
(accepting digits)
\square lexical analyzer
(recognizing computer language keywords)
\square finite automaton
(accepting valid strings of symbols)

Automata Theory Model Type III: Transducer

\square Interpreter
(translating natural languages)
\square Compiler
(translating high-level languages into machine codes)
\square Turing machine
(transforming strings of symbols)

Real Life Applications of Deterministic Finite Automata

Traffic Lights
Video Games
CPU Controllers
Protocol Analysis /Design
Regular Expression Matching
Vending Machines
Speech Recognition
Natural Language Processing

Asynchronous circuits /Digital
Circuit Design
Coding theory,
Concurrent Systems
Software and Hardware
verification
Hardware Testing

Internet Protocols: TCP as a DFA

Examples of Automata I: Sequential Machines

\square Asynchronous circuits /digital circuit design
\square Coding theory,
Concurrent systems
\square Software and hardware verification
\square Hardware testing
\square Protocol design

Example of Automata II: Vending Machines

\square A vending machine is an automated machine that dispenses numerous items such as cold drinks, snacks, beverages, alcohol etc. to sales automatically, after a buyer inserts currency or credit into the machine.
\square Vending machine is works on finite state automate to control the functions process.

Example of Automata III: Traffic Lights

The optimization of traffic light controllers in a city is a systematic representation of handling the instructions of traffic rules.
\square Its process depends on a set of instruction works in a loop with switching among instruction to control traffic.

Examples of Automata IV

Video Games: Video games levels represent the states of automata. In which a sequence of instructions are followed by the players to accomplish the task.

Text Parsing: Text parsing is a technique which is used to derive a text string using the production rules of a grammar to check the acceptability of a string.

Regular Expression Matching: It is a technique to checking the two or more regular expression are similar to each other or not. The finite state machine is useful to checking out that the expressions are acceptable or not by a machine or not.

Example of Automata V: Speech Recognition

\square Speech recognition via machine is the technology enhancement that is capable to identify words and phrases in spoken language and convert them to a machine-readable format
\square Receiving words and phrases from real world and then converting it into machine readable language automatically is effectively solved by using finite state machine.

Summary: Applications of Theory of Computation

-Text analysis

- text search
- text editing
- Compiler design
- lexical analysis
- parser generation-Expert system design
-Cryptography ...
-Digital system design
- computer design
- special digital system design
-Protocol modeling and verification
-Language design
- programming language design
- document description
language design
- e.g., HTML, XML, ...
- picture language design
- e.g., SVG, VHML, ...
- special language design

Fields Related to Scope of Theory of Computation

Fields	
Compiling theory	Formal languages
Switching circuit theory	Automata theory
Algorithm analysis	Computational complexity
Natural language processing	Formal languages
Syntactic pattern recognition	Formal languages
Programming languages	Formal languages
Artificial intelligence	Formal languages and automata theory
Neural networks	Automata theory

Introduction to Computability

Il there a flight between Detroit and New York for less that $\$ 100$?
*Such a question is a decision problem
\checkmark we want a decision on whether the answer is yes or no.
\square We can generalize the question above into a predicate that takes an input value:
$*$ Is there a flight between Detroit and x for less than $\$ 100$?
\checkmark Given any particular destination x, the answer to this question is still either yes or no.
\square We can further generalize this predicate to work with multiple input values:

* Is there a flight between x and y for less than z ?

Computability Theory / Recursion Theory

\square An effective procedure that can be carried out by following specific rules.
We might ask whether there is some effective procedure, some algorithm
*given a sentence about the integers will decide whether that sentence is true or false.
\square The set of even integers is decidable

The difference between Decidable and Recognizable

AA language is said to be Decidable if there is a machine that will

* accept strings in the language
and
*reject strings not in the language

AA language is called Turing Recognizable if some Turing Machine recognizes it.
\square A Language is called Turing Decidable if some Turing Machine decides it.

Problems Studied in Theory of Computation

- "What are the fundamental capabilities and limitations of computers?"
- What can a computer do at all? ---
studied in the domain of Computability!
- What can a computer do efficiently? --- studied in the domain of

Computational complexity!

How do you Determine Decidable?

\square A language is called Decidable or Recursive if there is a Turing machine which accepts and halts on every input string w.
\square Every decidable language is Turing-Acceptable.
$\square A$ decision problem P is decidable if the language L of all yes instances to P is decidable.

The relationships among classes of languages

Language Hierarchy

\square Turing-recognizability means that there is a program that can confirm that a string w is in a language
\square co-Turing-recognizability means that there is a program that can confirm that a string w is not in the language.

Language hierarchy

Finite Automata

Input: finite string
Output: Accept or Reject
Computation process: Begin at start state, read input symbols, follow corresponding transitions, Accept if end with accept state, Reject if not.

Examples: $01101 \rightarrow$ Accept

$$
00101 \rightarrow \text { Reject }
$$

M_{1} accepts exactly those strings in A where $A=\{w \mid w$ contains substring 11$\}$.

Definition FA

A finite automaton M is a 5-tuple ($Q, \Sigma, \delta, q_{0}, A$)
Q finite set of states

- Σ finite set of alphabet symbols
- δ transition function $\delta: Q \times \Sigma \rightarrow Q$

- q_{0} start state
- A set of accept states

$$
\begin{array}{lr|rr}
M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right) & \delta= & 0 & 1 \\
\cline { 2 - 4 }=\left\{q_{1}, q_{2}, q_{3}\right\} & q_{1} & q_{1} & q_{2} \\
\Sigma=\{0,1\} & q_{2} & q_{1} & q_{3} \\
=\left\{q_{3}\right\} & q_{3} & q_{3} & q_{3}
\end{array}
$$

Finite Automata - Computation

Strings and languages

- A string is a finite sequence of symbols in Σ
- A language is a set of strings (finite or infinite)
- The empty string ε is the string of length 0
- The empty language \varnothing is the set with no strings

Definition: M accepts string
$w=w_{1} w_{2} \ldots w_{n}$ each $w_{i} \in \Sigma$
if there is a sequence of states $r_{0}, r_{1}, r_{2}, \ldots, r_{n} \in Q$ where:
$-r_{0}=q_{0}$

- $r_{i}=\delta\left(r_{i-1}, w_{i}\right)$ for $1 \leq i \leq n$
- $r_{n} \in F$

Recognizing languages $L(M)=\{w \mid M$ accepts $w\}$ $L(M)$ is the language of M M recognizes $L(M)$

Definition

A language is regular if some finite automaton recognizes it.

Regular Languages - Examples

More examples:

Let $B=\{w \mid w$ has an even number of 1 s$\}$ B is regular
$L\left(M_{1}\right)=\{w \mid w$ contains substring 11$\}=A$
Therefore A is regular
Let $C=\{w \mid w$ has equal numbers of 0 s and 1 s$\}$
C is not regular

Regular Expressions

Let A, B be languages:

Union: $\quad A \cup B=\{w \mid w \in A$ or $w \in B\}$
Concatenation: $\quad A \circ B=\{x y \mid x \in A$ and $y \in B\}=A B$
Star:
$A *=\left\{x_{1} \ldots x_{k} \mid\right.$ each $x_{i} \in A$ for $\left.k \geq 0\right\}$
Note: $\varepsilon \in A^{*}$ always

Example Let $A=\{$ good, bad $\}$ and $B=\{b o y$, girl $\}$.
$A \cup B=\{$ good, bad, boy, girl\}
$A \circ B=A B=\{$ goodboy, goodgirl, badboy, badgirl\}
$A^{*}=\{\varepsilon$, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ... \}

Finite Automata equivalent to Regular Expressions

Regular expressions

Built from Σ, members $\Sigma, \emptyset, \varepsilon$ [Atomic]
By using U, o, * [Composite]

Examples:
$(0 \cup 1)^{*}=\Sigma^{*}$ gives all strings over Σ
$\Sigma^{*} 1$ gives all strings that end with 1
$\Sigma^{*} 11 \Sigma^{*}=$ all strings that contain $11=L\left(M_{1}\right)$

Closure Properties for Regular Languages

Theorem: If r_{1}, r_{2} are regular languages, so is $r_{1} \cup r_{2}$ (closure under U)
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, A_{1}\right)$ recognize r_{1}

$$
M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, A_{2}\right) \text { recognize } r_{2}
$$

Construct $M=\left(Q, \Sigma, \delta, q_{0}, A\right)$ recognizing $r_{1} \cup r_{2}$
M should accept input w if either M_{1} or M_{2} accept w.

Components of \boldsymbol{M} :

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \\
& \quad=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1} \text { and } q_{2} \in Q_{2}\right\} \\
& q_{0}=\left(q_{1}, q_{2}\right) \\
& \delta((q, r), a)=\left(\delta_{1}(q, a), \delta_{2}(r, a)\right) \\
& \mathrm{A}=\mathrm{A}_{1} \times \mathrm{A}_{z} \text { gives no intersection } \\
& \mathrm{A}=\left(\mathrm{A}_{1} \times Q_{2}\right) \cup\left(Q_{1} \times \mathrm{A}_{2}\right)
\end{aligned}
$$

Closure Properties for Regular Languages

Theorem: If r_{1}, r_{2} are regular languages, so is $r_{1} r_{2}$ (closure under o)
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, A_{1}\right)$ recognize r_{1}

$$
M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right) \text { recognize } r_{2}
$$

Construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ recognizing $r_{1} r_{2}$

