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Types of Theory of Computation

Automata Theory -

 Game of Life- Cellular Automaton - British mathematician John Horton Conway 1970

Turing Complete - no physical system can have infinite memory, but if the limitation of finite memory 

is ignored, most programming languages are Turing-complete.

Formal Language

Computability theory 

Complexity theory



Automata Theory 

An automaton with a finite number of states is called a Finite Automaton 

(FA) or Finite State Machine (FSM)

Boolean Algebra

Truth Table

Logic Diagram



Basic terms in Automata Theory 

Symbols:  These are either individual objects or separate entities. These can 

be any letter, alphabet or any picture.

Strings: These are a finite collection of symbols from the alphabet, and are 

denoted by w.

Language: A collection of appropriate strings is called a language. A language 

can be Finite or Infinite.



Automata Theory

How a vending machine works? 

Vending machine room seen in 

Hokkaido, Japan 2004

How to design a vending machine?

→ Use a finite automaton!



Automata Theory

An example:    Assumptions (for simplicity)

Only  5-L  and 10-L  are used.

Only drinks all of 20 L are sold.

Requiring “memory” called “states” for the design.
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Vending Machine Autamaton

The states of Deterministic Finite Automata (DFA) for Vending Machines 

include:

Q = {$0.00, $0.25, $0.50, $0.75, $1.00, $1.25, $1.50, $1.75, $2.00} (states)

Σ = {$0.25, $1.00, select} is the alphabet

q0 = $0.00 is the start state

A = ∅ is the set of accept states



Vending Machine 



Other Two Applications of Theory of Computation

Entire Universe 

model with a Automata Machine

Theory of Computation

similar to existing theories in Physics
https://www.bristol.ac.uk/maths/research/highlights/riemann-hypothesis/

Complexities in Natural Selection in Biology -Automata Theory



Automata Theory

Three major models of automata 

– generator --- with output and without input

– acceptor --- with input and without output

– transducer --- both with input and with output

generator acceptor transducer

trigger 

signal

Yes 

or 

No



Automata Theory Model Type I: 

Generator

“natural language” grammar

(generating “sentences” spoken by people)

reception robot

(speaking organized words and sentences)

context-free grammar

(generating strings of symbols) 

Reception robot 

--- Expo 2005



Automata Theory Model Type II:

Acceptor
digital lock

(accepting digits)

lexical analyzer

(recognizing computer language keywords)

finite automaton

(accepting valid strings of symbols) 



Automata Theory Model Type III:

Transducer

Interpreter

(translating natural languages)

Compiler

(translating high-level languages into machine codes)

Turing machine

(transforming strings of symbols) 



Real Life Applications of Deterministic Finite

Automata
Traffic Lights

Video Games

CPU Controllers

Protocol Analysis /Design 

Regular Expression Matching

Vending Machines

Speech Recognition

Natural Language Processing

Asynchronous circuits /Digital

Circuit Design                      

Coding theory, 

Concurrent Systems

Software and Hardware

verification

Hardware Testing



Internet Protocols:

TCP as a  DFA



Examples of Automata I: Sequential Machines

Asynchronous circuits /digital circuit design

Coding theory, 

Concurrent systems 

Software and hardware verification

Hardware testing

Protocol design



Example of Automata II: Vending Machines

A vending machine is an automated machine that dispenses numerous 

items such as cold drinks, snacks, beverages, alcohol etc. to sales 

automatically, after a buyer inserts currency or credit into the machine. 

Vending machine is works on finite state automate to control the 

functions process.



Example of Automata III: Traffic Lights

The optimization of traffic light controllers in a city is a systematic 

representation of handling the instructions of traffic rules. 

Its process depends on a set of instruction works in a loop with 

switching among instruction to control traffic.



Examples of Automata IV

Video Games: Video games levels represent the states of automata. In which a 

sequence of instructions are followed by the players to accomplish the task.

Text Parsing: Text parsing is a technique which is used to derive a text string 

using the production rules of a grammar to check the acceptability of a string.

Regular Expression Matching: It is a technique to checking the two or more 

regular expression are similar to each other or not. The finite state machine is 

useful to checking out that the expressions are acceptable or not by a machine 

or not.



Example of Automata V: Speech Recognition

Speech recognition via machine is the technology 

enhancement that is capable to identify words and phrases in 

spoken language and convert them to a machine-readable 

format

Receiving words and phrases from real world and then 

converting it into machine readable language automatically is 

effectively solved by using finite state machine.



Summary:  Applications of Theory of Computation

– Text analysis 

• text search 

• text editing 

– Compiler design 

• lexical analysis 

• parser generation 

– Language design

• programming 

language design 

• document 

description 

language design 

– e.g., HTML, XML, …

• picture language 

design 

– e.g., SVG, VHML, …

• special language 

design 

– Digital system design

• computer design 

• special digital system 

design 

– Protocol modeling and 

verification

– Expert system design

– Cryptography …



Fields Related to Scope of Theory of 

Computation

Fields Related theory

Compiling theory Formal languages

Switching circuit theory Automata theory

Algorithm analysis Computational complexity

Natural language processing Formal languages

Syntactic pattern recognition Formal languages

Programming languages Formal languages

Artificial intelligence Formal languages and automata theory

Neural networks Automata theory



Introduction to Computability 

Is there a flight between Detroit and New York for less that $100?
Such a question is a decision problem 

 we want a decision on whether the answer is yes or no.

We can generalize the question above into a predicate that takes an 
input value:
Is there a flight between Detroit and x for less than $100?

Given any particular destination x, the answer to this question is still either yes or no.

We can further generalize this predicate to work with multiple input 
values:
Is there a flight between x and y for less than z?



Computability Theory  / Recursion Theory

 An effective procedure that can be carried out  by following specific 
rules. 

We might ask whether there is some effective   procedure, some 
algorithm 
given a sentence about the integers  will decide whether that sentence is true or 

false. 

The set of even integers is decidable



The difference between
Decidable and Recognizable 

A language is said to be Decidable if there is a machine that will 
accept strings in the language 

and 

reject strings not in the language

A language is called Turing Recognizable if some Turing Machine 
recognizes it. 

A Language is called Turing Decidable if some Turing Machine decides it.



Problems Studied in Theory of Computation

“What are the fundamental capabilities and limitations of computers?”

– What can a computer do at all? ---

studied in the domain of Computability!

– What can a computer do efficiently? --- studied in the domain of 

Computational complexity!



How do you Determine Decidable?

A language is called Decidable or Recursive if there is a Turing machine 
which accepts and halts on every input string w.

Every decidable language is Turing-Acceptable.

A decision problem P is decidable if the language L of all yes instances to 
P is decidable.

The relationships among classes of languages



Language Hierarchy

Turing-recognizability means that there is a program that can 
confirm that a string w is in a language

 co-Turing-recognizability means that there is a program that can 
confirm that a string w is not in the language.



Finite Automata
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States:  �1 �2 �3 

Transitions:  

Start state:  

Accept states:  

States:  �1 �2 �3 

Transitions:  

Start state: :  �1 

Accept states:�3

1

Input: finite string

Output: Accept or Reject

Computation process:  Begin at start state,

read input symbols, follow corresponding transitions, 

Accept if end with accept state, Reject if not. 

Examples: 01101 → Accept 

00101 → Reject

�1 accepts exactly those strings in � where

� =  {�| � contains substring 11}.



Definition FA 

A finite automaton � is a 5-tuple (�, Σ, �, �0, �)

� finite set of states

• Σ finite set of alphabet symbols

• � transition function  �:  � × Σ →  �      

•    �0 start state

•    � set of accept states
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�1 =  (�, Σ, �, �1, �)

� =  {�1, �2, �3}

Σ =  {0, 1}      

 =  {�3}
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Finite Automata – Computation

Strings and languages

- A string is a finite sequence of symbols in Σ

- A language is a set of strings (finite or infinite)

- The empty string ε is the string of length 0

- The empty language ø is the set with no strings

Definition:  � accepts string   

� =  �1�2 …  ��    each �� � Σ 

if there is a sequence of states   �0, �1, �2, , … , ��  �  �  
where:  

- �0 =  �0
- �� =  �(� !", ��) for  1 ≤ � ≤ �  
- �� � �

Recognizing languages
$(�) = {�| � accepts �}  

$(�) is the language of �

� recognizes $(�)

Definition
A language is regular if some 

finite automaton recognizes it.



Regular Languages – Examples 

�1

�1 �2 �3
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$ �" =  {�| � contains substring 11} = � 

Therefore � is regular 

More examples:

Let 0 = �  � has an even number of 1s}

0 is regular

Let 1 = �  � has equal numbers of 0s and 1s}

1 is not regular



Regular Expressions

Let �,0 be languages:

Union: �∪0={� |  �∈� or  �∈0}

Concatenation: �∘0={56 |  5∈� and  6∈0} =�0

Star: � ∗={51… 58 |  each 5�∈� for  8≥0}
Note:   ε∈�∗ always

Example Let �={good, bad} and 0={boy, girl}.

�∪0= {good, bad, boy, girl}

�∘0=�0= {goodboy, goodgirl, badboy, badgirl}

�∗=  {ε, good, bad, goodgood, goodbad, badgood, 
badbad, goodgoodgood, goodgoodbad, … }



Finite Automata equivalent to Regular Expressions

• RegRegular expressions

Built from  Σ, members  Σ,  ∅, ε [Atomic]

By using  ∪,  ∘,  ∗ [Composite]

Examples: 

0 ∪ 1 ∗ = Σ∗ gives all strings over Σ

Σ∗1 gives all strings that end with 1 

Σ∗11Σ∗ = all strings that contain 11 = $ �" ular expressions

- Built from  Σ, members Σ, ∅, ε [Atomic]

- By using  ∪,∘,∗ [Composite]



Closure Properties for Regular Languages
Theorem:  If   �", �2  are regular languages, so is �" ∪ �2 (closure under ∪)  

Proof:   Let �" = (�", Σ,  �" ,  �" ,  �" ) recognize �"

�: = (�:, Σ,  �: ,  �: ,  �: ) rrecognize �:

Construct   � =  (� , Σ, � , �0, �) recognizing �" ∪ �:

� should accept input  � if either �" or  �: accept �.� should accept 
input  � if either �" or  �: accept �.

Components of ;: 

�=�1×�2

={(�1,�2 )| �1∈�1 and  �2∈�2} 

�0=(�1, �2)

�((�,�),<)=(�1 (�,<), �2 (�,<))

A=A1× A2 gives no intersection =

A=(A1×�2 )∪(�1×A2 ) 

�"

�

�:

�

�

?



Closure Properties for Regular Languages

Theorem:  If   �",  �:  are regular languages, so is �"�: (closure under ∘)  

Proof:   Let �" = (�", Σ,  �" ,  �" ,  �" ) recognize �"

�: = (�:, Σ,  �: ,  �: ,  �: ) recognize �:

Construct   � =  (� , Σ, � , �0, � ) recognizing �"�:

�" �:

�

� should accept input  �

if � = 56 where 

�" accepts 5 and  �: accepts 6.    

�
y5

Doesn’t work:  Where to split �?


