
https://doi.org/10.1007/s12559-024-10339-4

Shift-Reduce Task-Oriented Semantic Parsing with Stack-Transformers

Daniel Fernández-González1

Received: 28 June 2023 / Accepted: 30 July 2024
© The Author(s) 2024

Abstract
Intelligent voice assistants, such as Apple Siri and Amazon Alexa, are widely used nowadays. These task-oriented dialogue
systems require a semantic parsing module in order to process user utterances and understand the action to be performed. This
semantic parsing componentwas initially implemented by rule-based or statistical slot-filling approaches for processing simple
queries; however, the appearance of more complex utterances demanded the application of shift-reduce parsers or sequence-
to-sequence models. Although shift-reduce approaches were initially considered the most promising option, the emergence of
sequence-to-sequence neural systems has propelled them to the forefront as the highest-performing method for this particular
task. In this article, we advance the research on shift-reduce semantic parsing for task-oriented dialogue. We implement novel
shift-reduce parsers that rely on Stack-Transformers. This framework allows to adequately model transition systems on the
transformer neural architecture, notably boosting shift-reduce parsing performance. Furthermore, our approach goes beyond
the conventional top-down algorithm: we incorporate alternative bottom-up and in-order transition systems derived from
constituency parsing into the realm of task-oriented parsing. We extensively test our approach on multiple domains from the
Facebook TOP benchmark, improving over existing shift-reduce parsers and state-of-the-art sequence-to-sequence models in
both high-resource and low-resource settings. We also empirically prove that the in-order algorithm substantially outperforms
the commonly used top-down strategy. Through the creation of innovative transition systems and harnessing the capabilities
of a robust neural architecture, our study showcases the superiority of shift-reduce parsers over leading sequence-to-sequence
methods on the main benchmark.

Keywords Natural language understanding · Computational linguistics · Semantic parsing · Task-oriented dialogue · Neural
network · Voice assistants

Introduction

The research community and industry have directed sig-
nificant attention towards the advancement of intelligent
personal assistants such as Apple Siri, Amazon Alexa, and
Google Assistant. These systems, known as task-oriented
dialogue systems, streamline task completion and infor-
mation retrieval via natural language interactions within
defined domains such as media playback, weather inquiries,
or restaurant reservations. The increasing adoption of these
voice assistants by users has not only transformed individu-
als’ lives but also impacted real-world businesses.

Humans effortlessly understand language, derivingmean-
ing from sentences and extracting relevant information.

B Daniel Fernández-González
danifg@uvigo.gal

1 Departamento de Informática, Universidade de Vigo, Campus
As Lagoas s/n, 32004 Ourense, Spain

Semantic parsing attempts to emulate this process by under-
standing the meaning of natural language expressions and
translating them into a structured representation that can be
interpreted by computational systems. Therefore, a crucial
component of any voice assistant is a semantic parser in
charge of natural language understanding. Its purpose is to
process user dialogue by converting each input utterance into
an unequivocal task representation understandable and exe-
cutable by a machine. Specifically, these parsers identify the
user’s requested task intent (e.g., play music) as well as per-
tinent entities needed to further refine the task (e.g., which
playlist?).

Traditional commercial voice assistants conventionally
handle user utterances by conducting intent detection and
slot extraction tasks separately. For example, given the
utterance Play Paradise by Coldplay, the semantic pars-
ing module processes it in two stages: a) initially deter-
mining the user’s intent as IN:PLAY_MUSIC, and then
b) recognizing task-specific named entities Paradise and

/ Published online: 22 August 2024

Cognitive Computation (2024) 16:2846–2862

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-024-10339-4&domain=pdf
https://orcid.org/0000-0002-6733-2371

Coldplay, respectively tagging these elements (slots) as
SL:MUSIC_TRACK_TITLE and SL:MUSIC_ARTIST
_NAME. Intent detection has traditionally been approached as
text classification, where the entire utterance serves as input,
while slot recognition has been formulated as a sequence
tagging challenge [1–3].

Annotations generated by these traditional semantic parsers
only support a single intent per utterance and a list of non-
overlapping slots exclusively composed by tokens from the
input. While this flat semantic representation suffices for
handling straightforward utterances, it falls short in ade-
quately representing user queries that involve compositional
requests. For instance, the query How long will it take to
drive from my apartment to San Diego? necessitates first
identifying my apartment (IN:GET_LOCATION_HOME)
before estimating the duration to the destination (IN:GET_
ESTIMATED_DURATION). Hence, there is a requirement
for a semantic representation capable of managing multiple
intents per utterance, where slots encapsulate nested intents.

In order to represent more complex utterances, Gupta
et al. [4] introduced the task-oriented parsing (TOP) for-
malism: a hierarchical annotation scheme expressive enough
to describe the task-specific semantics of nested intents and
model compositional queries. In Fig. 1, we illustrate how
the intents and slots of utterances mentioned in the previous
examples can be represented using the TOP annotation.

An advantage of the TOP representation is its ease of
annotation and parsing compared to more intricate seman-
tic formalisms such as logical forms [5] or abstract meaning
representations (AMR) [6]. In fact, its similarity to a syn-
tactic constituency tree enables the adaptation of algorithms

from the constituency parsing literature to process task-
oriented requests. Thiswas the driving force behind [4] initial
proposal tomodify the shift-reduce constituency parser intro-
duced by [7] for generating TOP annotations.

Alternatively, Gupta et al. [4] also proposed the appli-
cation of different sequence-to-sequence models [8–10] for
parsing compositional queries. Sequence-to-sequence mod-
els comprise a specific neural architecture tasked with
predicting a sequence of output tokens based on an input
sequence of items. After conducting empirical comparisons
between the shift-reduce technique and various sequence-
to-sequence models for parsing compositional queries, they
determined that the shift-reduce parser surpassed othermeth-
ods and was the only approach capable of guaranteeing that
the output representation adhered to a well-formed TOP
tree. This superiority can be largely attributed to the fact
that, unlike sequence-to-sequence models, shift-reduce algo-
rithms adhere to grammar constraints throughout the parsing
process and exhibit an inductive bias towards tree structures,
resulting in enhanced performance.

Although sequence-to-sequence approaches may pro-
duce flawed representations, recent advancements [11, 12]
have substantially enhanced their performance by leveraging
Transformer neural networks [10] in conjunction with pre-
trained language models such as RoBERTa [13] or BART
[14]. Consequently, they have emerged as the most accurate
approach to date for generating TOP tree structures.

This article presents further advancements in the realm
of shift-reduce semantic parsing for natural language under-
standing. Specifically, we enhance the initial framework
introduced by [4], which relied on the top-down transition

Fig. 1 Flat and compositional
TOP annotations of utterances
from music and navigation
domains, respectively. Note that
intents and slots are respectively
prefixed with IN: and SL:

?How long will it take to

(b) How long will it take to drive from my apartment to San Diego ?

from to

my

apartment

San Diegodrive

(a) Play Paradise by Coldplay

Play by

Paradise Coldplay

2847Cognitive Computation (2024) 16:2846–2862

1 3

system [7] and a Stack-LSTM-based neural architecture [15].
Firstly, we implement a more robust neural model based
on Stack-Transformers [16], enabling the accurate modeling
of shift-reduce systems within a Transformer-based neural
architecture. Secondly, we adapt the bottom-up and in-order
transition systems [17, 18] from the constituency parsing
literature to task-oriented semantic parsing. Lastly,we empir-
ically evaluate these alternatives, along with the top-down
algorithm, on our neural architecture. Our findings demon-
strate that the in-order transition system achieves the highest
accuracy on the Facebook TOP benchmark [4, 19], even out-
performing the most robust sequence-to-sequence baselines.

In summary, our contributions in this article are as follows:

• We develop innovative shift-reduce semantic parsers
for task-oriented dialogues utilizing Stack-Transformers
and deep contextualized word embeddings derived from
RoBERTa.

• We adapt various transition systems from the con-
stituency parsing literature to handle TOP annotations
and conduct a comprehensive comparison against the
original top-down approach, demonstrating the superi-
ority of the in-order algorithm across all scenarios.

• Weevaluate our approach on both low-resource and high-
resource settings of the Facebook TOP datasets, pushing
the boundaries of the state of the art in task-oriented pars-
ing and narrowing the divide with sequence-to-sequence
models.

• Upon acceptance, wewill make our system’s source code
freely available for public use.

The remainder of this article is organized as follows: In
“Related Work,” we provide an overview of prior research
on semantic parsing for task-oriented compositional queries.
“Methodology” outlines our proposed approach, beginning
with an exposition of the transition-based algorithms adapted
from constituency parsing, followed by a detailed descrip-
tion of the Stack-Transformer-based neural model. “Exper-
iments” presents the experiments conducted with the three
transition systems using the proposed neural architecture as
a testing platform, along with a comprehensive analysis of
their performance. Finally, concluding remarks are presented
in “Conclusions.”

RelatedWork

The hierarchical semantic representation introduced by [4]
to address compositional queries spurred the adaptation
of parsing algorithms initially developed for constituency
parsing, such as the Stack-LSTM-based shift-reduce parser
[7]. Additionally, Gupta et al. [4] proposed sequence-to-
sequence models for this task, including those based on

convolutional neural networks (CNNs) [9], long short-term
memory (LSTM) neural networks [8], and transformers [10].
Although sequence-to-sequence methods were originally
devised for machine translation [20], they were also adapted
to constituency parsing by first linearizing the tree structure
[21].

Given that the shift-reduce parser initially emerged as the
leading method for generating TOP representations, Einol-
ghozati et al. [22] opted to enhance the original system by
incorporating an ensemble of seven parsers, contextualized
word embeddings extracted fromELMo [23], and a language
model ranker. Concurrently, Pasupat et al. [24] modified the
span-based constituency parser proposed by [25] to process
utterances into TOP trees, achieving promising results with-
out the use of deep contextualized word embeddings.

While sequence-to-sequence models initially lagged behind
all available semantic parsing methods, recent advancements
have substantially improved their performance in construct-
ing TOP representations. Notably, Rongali et al. [11] devised
a sequence-to-sequence architecture bolstered by a Pointer
GeneratorNetwork [26] and aRoBERTa-based encoder [13].
This neural architecture emerged as the state of the art in
task-oriented semantic parsing and has since been adopted
and extended by subsequent studies. Among them, Agha-
janyan et al. [12] and Chen et al. [19] proposed simplifying
the target sequence by eliminating input tokens that are not
slot values, while also initializing both the encoder and the
decoder with the pre-trained sequence-to-sequence model
BART [14]. Furthermore, non-autoregressive variants of the
sequence-to-sequence architecture introduced by [11] have
been presented as well [27–30]. Additionally, Shrivastava
et al. [31] recently enhanced sequence-to-sequence models
with a scenario-based approach, where incomplete intent-
slot templates are available in advance and can be retrieved
after identifying the utterance’s scenario. Meanwhile, Wang
et al. [32] chose to enhance the efficiency of sequence-to-
sequence models by generating subtrees as output tokens at
each decoding step.

Diverging from the current mainstream trends, we push
forward the boundaries of research in shift-reduce task-
oriented parsing by crafting a novel approach grounded in a
more accurate transition system and implemented on a more
robust neural architecture. As a result, our system surpasses
even the strongest sequence-to-sequence baselines.

Simultaneously with our research, Do et al. [33] have
developed a two-staged approach that demonstrates remark-
able results. Initially, they enhance standard pre-trained
language models through fine-tuning, incorporating addi-
tional hierarchical semantic information. Subsequently, the
resulting model is integrated with a recursive insertion-
basedmechanism [34], constrained by grammar information.
Specifically, grammar rules extracted from the training
dataset are employed to prune unpromising predictions dur-

2848 Cognitive Computation (2024) 16:2846–2862

1 3

ing the parsing process [35]. It is worth noting that these
contributions are orthogonal to our approach and could cer-
tainly enhance its performance.

Methodology

This section outlines our proposed approach. Specifically, we
elaborate on the transition-based algorithms adapted from
the constituency parsing literature to handle task-oriented
utterances, as well as the neural architecture serving as the
foundation of our system.

Transition Systems for Task-Oriented Semantic
Parsing

In task-oriented semantic parsing, the objective is to trans-
form an input utterance comprising n words, denoted as
X = w1, . . . , wn , into a semantic representation—in our
case, a TOP tree Y . Similar to syntactic constituency repre-
sentations, Y is a rooted tree consisting of tokens w1, . . . wn

as its leaves and a collection of internal nodes (referred to
as constituents) hierarchically structured above them. These
constituents are denoted as tuples (N ,W), where W repre-
sents the set of tokens covered by its span, and N denotes
the non-terminal label. For example, (SL:SOURCE, {my,
apartment}) and (SL:DESTINATION, {San, Diego}) are
constituents extracted from the TOP tree depicted in Fig. 1b.
Additionally, in our specific scenario, two distinct types of
constituents emerge: intents and slots, with non-terminal
labels respectively prefixed with IN: and SL:. Finally, tree
structures must adhere to certain constraints to be deemed a
valid TOP representation:

• The root constituent, which encompasses the entire utter-
ance, must be an intent node.

• Only tokens and/or slot constituents can serve as child
nodes of an intent node.

• A slot node may have either words (one or several) or a
single intent constituent as child nodes.

To process the input utterance, we employ shift-reduce
parsers, initially introduced for dependency and constituency
parsing [36, 37]. These parsers construct the target tree incre-
mentally by executing a sequence of actions that analyze the
input utterance from left to right. Specifically, shift-reduce
parsers are characterized by a non-deterministic transition
system,whichdefines the necessarydata structures and the set
of operations required to complete the parsingprocess; and an
oracle, which selects one of these actions deterministically
at each stage of the parsing process. Formally, a transition
system is represented as a quadruple S = (C, c0,C f , T),
where:

• C denotes the set of possible state configurations, defin-
ing the data structures necessary for the parser.

• c0 represents the initial configuration of the parsing pro-
cess.

• C f is the set of final configurations reached at the end of
the parsing process.

• T signifies the set of available transitions (or actions)
that can be applied to transition the parser from one state
configuration to another.

Moreover, during training, a rule-based oracle o, given the
gold parse tree Yg , selects action at for each state configura-
tion ct at each time step t : at = o(ct , Yg). Once the model is
trained, it approximates the oracle during decoding.

We can utilize a transition system S along with an ora-
cle o to parse the utterance X : commencing from the initial
configuration c0, a sequence of transitions a0, . . . , am−1

(determined by the oracle at each time step t) guides the sys-
tem through a series of state configurations c0, . . . , cm until
a final configuration is reached (cm ∈ C f). At this stage,
the utterance will have been fully processed, and the parser
will generate a valid TOP tree Y . Various transition systems
exist in the literature on constituency parsing. In addition to
the algorithm employed by [4], we have adapted two other
transition systems for task-oriented semantic parsing, which
we elaborate on in the subsequent sections.

Top-Down Transition System Initially conceived by [7] for
constructing constituency trees in a top-to-bottom fashion,
this transition system was later adapted by [4] to accom-
modate TOP tree representations. The top-down transition
system comprises the following components:

• State configurations within C are structured as c =
〈�, B〉, where � denotes a stack (responsible for storing
non-terminal symbols, constituents, and partially pro-
cessed tokens), and B represents a buffer (containing
unprocessed tokens to be read from the input).

• At the initial configuration c0, the buffer B encompasses
all tokens from the input utterance, while the stack �

remains empty.
• Final configurations within C f are structured as c =

〈[I],∅〉, where the buffer is empty (indicating that all
words have been processed), and the stack contains a
single item I . This item represents an intent constituent
spanning the entire utterance, as the root node of a valid
TOP tree must be an intent.

• The set of available transitions T consists of three actions:

– The Non- Terminal- L transition involves pushing
a non-terminal node labeled L onto the stack, tran-
sitioning the system from state configurations of the
form 〈�, B〉 to 〈�|L, B〉 (where�|L denotes a stack
with item L placed on top and � as the tail). Unlike

2849Cognitive Computation (2024) 16:2846–2862

1 3

in constituency parsing, this transition can generate
intent and slot non-terminals (with labels L pre-
fixed with IN: or SL:, respectively). Therefore, it
must adhere to specific constraints to produce a well-
formed TOP tree:

∗ Since the root node must be an intent con-
stituent, the first Non- Terminal- L transition
must introduce an intent non-terminal onto the
stack.

∗ A Non- Terminal- L transition that inserts an
intent non-terminal onto the stack is permissible
only if the last pushed non-terminal was a slot,
performed in the preceding state configuration.
This condition ensures that the resulting intent
constituent from this transition becomes the sole
child node of that preceding slot, as required by
the TOP formalism.

∗ A Non- Terminal- L transition adding a slot
non-terminal to the stack is allowed only if the
last inserted non-terminal was an intent.

– A Shift action is employed to retrieve tokens from
the input by transferring words from the buffer to
the stack. This operation transitions the parser from
state configurations 〈�,wi |B〉 to 〈�|wi , B〉 (where
wi |B denotes a buffer with token wi on top and B
as the tail, and conversely, �|wi represents a stack
with � as the tail and wi as the top). This transition
is permissible only if the buffer is not empty. Specif-
ically for task-oriented semantic parsing, this action
will not be available in state configurations where the
last non-terminal added to the stack was a slot, and an
intent constituent was already created as its first child
node. This constraint ensures that slot constituents
have only one intent as their child node.

– Additionally, a Reduce transition is necessary to
construct a new constituent by removing all items
(including tokens and constituents) from the stack
until a non-terminal symbol is encountered, then
grouping them as child nodes of that non-terminal.
This results in a new constituent placed on top of
the stack, transitioning the parser from configurations
〈�|L|ek | . . . |e0, B〉 to 〈�|Lek ...e0 , B〉 (where Lek ...e0
denotes a constituent with non-terminal label L and
child nodes ek . . . e0). This transition can be executed
only if there is at least one non-terminal symbol and
one item (token or constituent) in the stack.

Please note that the original work by [4] did not provide
specific transition constraints tailored to generating valid
TOP representations. Therefore, we undertook a com-
plete redesign of the original top-down algorithm [7] for
task-oriented semantic parsing to incorporate these task-
specific transition constraints.

Finally, Table 1 illustrates how the top-downalgorithmparses
the utterance depicted in Fig. 1a. It demonstrates the step-by-
step construction of each constituent,which involves defining
the non-terminal label, reading and/or creating all corre-
sponding child nodes, and then reducing all items within its
span.

Bottom-Up Transition System In contrast to the top-down
approach, shift-reduce algorithms traditionally perform con-
stituency parsing by building trees from bottom to top.
Therefore, we have also adapted the bottom-up transition
system developed by [17] for task-oriented semantic parsing.
Unlike classic bottom-up constituency parsing algorithms
[37, 38], this transition systemdoes not require prior binariza-
tion of the gold tree during training or subsequent recovery

Table 1 Top-down transition sequence and state configurations (represented by the stack and the buffer) for producing the TOP tree in Fig. 1a

Transition Stack Buffer

[] [Play, Paradise, by, Coldplay]

NT- IN:PLAY_MUSIC [IN:PLAY_MUSIC] [Play, Paradise, by, Coldplay]

Shift [IN:PLAY_MUSIC, Play] [Paradise, by, Coldplay]

NT- SL:TITLE [IN:PLAY_MUSIC, Play, SL:TITLE] [Paradise, by, Coldplay]

Shift [IN:PLAY_MUSIC, Play, SL:TITLE, Paradise] [by, Coldplay]

Reduce [IN:PLAY_MUSIC, Play, SL:TITLEParadise] [by, Coldplay]

Shift [IN:PLAY_MUSIC, Play, SL:TITLEParadise, by] [Coldplay]

NT- SL:ARTIST [IN:PLAY_MUSIC, Play, SL:TITLEParadise, by, SL:ARTIST] [Coldplay]

Shift [IN:PLAY_MUSIC, Play, SL:TITLEParadise, by, SL:ARTIST, Coldplay] []

Reduce [IN:PLAY_MUSIC, Play, SL:TITLEParadise, by, SL:ARTISTColdplay] []

Reduce [IN:PLAY_MUSICPlay SL:TITLE by SL:ARTIST] []

NT- L stands for Non- Terminal- L and slot labels have been abbreviated from SL:MUSIC_TRACK_TITLE and SL:MUSIC_ARTIST_NAME
to SL:TITLE and SL:ARTIST, respectively

2850 Cognitive Computation (2024) 16:2846–2862

1 3

of the non-binary structure after decoding. Specifically, the
non-binary bottom-up transition system comprises the fol-
lowing:

• State configurations have the form c = 〈�, B, f 〉, where
� is a stack, B is a buffer, as described for the top-down
algorithm, and f is a boolean variable indicating whether
a state configuration is terminal or not.

• In the initial configuration c0, the buffer contains the
entire user utterance, the stack is empty, and f is false.

• Final configurations inC f have the form c=〈[I],∅, true〉,
where the stack holds a single intent constituent, the
buffer is empty, and f is true. Following a bottom-up
algorithm, we can continue building constituents on top
of a single intent node in the stack, even when it spans
the whole input utterance. To avoid that, this transition
system requires the inclusion of variable f in state con-
figurations to indicate the end of the parsing process.

• Actions provided by this bottom-up algorithm are as fol-
lows:

– Similar to the top-down approach, a Shift action
moves tokens from the buffer to the stack, transition-
ing the parser from state configurations 〈�,wi |B,false〉
to 〈�|wi , B, false〉. This operation is not permissible
under the following conditions:

∗ When the buffer is empty and there are no more
words to read.

∗ When the top item on the stack is an intent node
and, since slots must have only one intent child
node, the parser needs to build a slot constituent
on top of it before shifting more input tokens.

– A Reduce#k- L transition (parameterized with the
non-terminal label L and an integer k) is used to
create a new constituent by popping k items from
the stack and combining them into a new con-
stituent on top of the stack. This transitions the parser

from state configurations 〈�|ek−1| . . . |e0, B, false〉
to 〈�|Lek−1...e0 , B, false〉. To ensure a valid TOP rep-
resentation, this transition can only be applied under
the following conditions:

∗ When the Reduce#k- L action creates an intent
constituent (i.e.,L is prefixedwithIN:), it is per-
missible only if there are no intent nodes among
the k items popped from the stack (as an intent
constituent cannot have other intents as child
nodes).

∗ When the Reduce#k- L transition builds a slot
node (i.e., L is prefixed with SL:), it is allowed
only if there are no slot constituents among the k
elements affected by this operation (as slots can-
not have other slots as child nodes).Additionally,
if the item on top of the stack is an intent node,
only the Reduce action with k equal to 1 is per-
missible (since slots can only contain a single
intent constituent as a child node).

– Lastly, a Finish action is used to signal the end of the
parsing process by changing the value of f , transi-
tioning the system from configurations 〈�, B, false〉
to final configurations 〈�, B, true〉. This operation
is only allowed if the stack contains a single intent
constituent and the buffer is empty.

Finally, Table 2 illustrates how this shift-reduce parser pro-
cesses the utterance in Fig. 1a, constructing each constituent
from bottom to top by assigning the non-terminal label after
all child nodes are fully assembled in the stack.

In-Order Transition System
Alternatively to the top-down and bottom-up strategies,

Liu and Zhang [18] introduced the in-order transition system
for constituency parsing. We have tailored this algorithm for
parsing task-oriented utterances. Specifically, the proposed
in-order transition system consists of the following:

Table 2 Transition sequence and state configurations (represented by the stack, buffer, and variable f) for building the TOP semantic representation
in Fig. 1a following a non-binary bottom-up approach

Transition Stack Buffer f

[] [Play, Paradise, by, Coldplay] false

Shift [Play] [Paradise, by, Coldplay] false

Shift [Play, Paradise] [by, Coldplay] false

Re#1- SL:TITLE [Play, SL:TITLEParadise] [by, Coldplay] false

Shift [Play, SL:TITLEParadise, by] [Coldplay] false

Shift [Play, SL:TITLEParadise, by, Coldplay] [] false

Re#1- SL:ARTIST [Play, SL:TITLEParadise, by, SL:ARTISTColdplay] [] false

Re#4- IN:PLAY_MUSIC [IN:PLAY_MUSICPlay SL:TITLE by SL:ARTIST] [] false

Finish [IN:PLAY_MUSICPlay SL:TITLE by SL:ARTIST] [] true

Re#k- L stands for Reduce#k- L

2851Cognitive Computation (2024) 16:2846–2862

1 3

• Configurations maintain the same format as the bottom-
up algorithm (i.e., c = 〈�, B, f 〉).

• In the initial configuration c0, the buffer contains the
entire user utterance, the stack is empty, and the value
of f is false.

• Final configurations take the form c = 〈[I],∅, true〉.
Similar to the bottom-up approach, the in-order algorithm
may continue creating additional constituents above the
intent node left on the stack indefinitely. Hence, a flag is
necessary to indicate the completion of the parsing pro-
cess.

• The available transitions are adopted from both top-down
and bottom-up algorithms, but some of them exhibit dif-
ferent behaviors or are applied in a different order:

– A Non- Terminal- L transition involves pushing a
non-terminal symbol L onto the stack, transitioning
the system from state configurations represented as
〈�, B, false〉 to 〈�|L, B, false〉. However, unlike the
top-down algorithm, this transition can only occur if
the initial child node of the upcoming constituent is
fully constructed on top of the stack. Furthermore, it
must meet other task-specific constraints to generate
valid TOP representations:

∗ A Non- Terminal- L transition that introduces
an intent non-terminal to the stack (i.e., L pre-
fixedwith IN:) is valid only if its first child node
atop the stack is not an intent constituent.

∗ A Non- Terminal- L transition that places a
slot non-terminal on the stack (i.e., L prefixed
withSL:) is permissible only if the fully-created
item atop the stack is not a slot node.

– Similarly to other transition systems, a Shift oper-
ation is used to retrieve tokens from the buffer.
However, unlike those algorithms, this action is
restricted if the upcoming constituent has already
been labeled as a slot (by a non-terminal previously
added to the stack) and its first child node is an intent
constituent already present in the stack. This con-
dition aims to prevent slot constituents from having
more than one child node when the item at the top of
the stack is an intent.

– A Reduce transition is employed to generate intent
or slot constituents. Specifically, it removes all ele-
ments from the stack until a non-terminal symbol
is encountered, which is simultaneously replaced
by the preceding item to form a new constituent
at the top of the stack. Consequently, it guides
the parser from state configurations represented
as 〈�|ek |L|ek−1| . . . |e0, B, false〉 to 〈�|Lek ...e0 , B,

false〉. This transition is only applicable if there is
a non-terminal in the stack (preceded by its first
child constituent according to the in-order algorithm).

Additionally, this transition must comply with spe-
cific constraints for task-oriented semantic parsing:

∗ When the Reduce operation results in an intent
constituent (as determined by the last non-
terminal label added to the stack), it is permis-
sible only if there are no intent nodes among
the preceding k − 1 items (since the first child
ek already adheres to the TOP formalism, as
verified during the application of the Non-

Terminal- L transition).
∗ When the Reduce transition produces a slot

constituent, it is allowed only if there are no
other slot nodes within the preceding k − 1
elements that will be removed by this opera-
tion. This condition also encompasses scenarios
where the initial child node ek of the upcoming
slot constituent is an intent and, since the Shift
transition is not permitted under such circum-
stances, only the Reduce action can construct a
slot with a single intent.

– Lastly, akin to the bottom-up approach, a Finish

action is utilized to finalize the parsing process. This
action is only permissible if the stack contains a single
intent constituent and the buffer is empty.

In Table 3, we illustrate how the in-order strategy parses
the user utterance depicted inFig. 1a.While the top-downand
bottom-up approaches can be respectively regarded as a pre-
order and post-order traversal over the tree, this transition
system constructs the constituency structure following an in-
order traversal, addressing the drawbacks of the other two
alternatives. The in-order strategy creates each constituent by
determining the non-terminal label after its first child is com-
pleted in the stack, and then processing the remaining child
nodes. Unlike the top-down approach,which assigns the non-
terminal label before reading the tokens composing its span,
the in-order algorithm can utilize information from the first
child node tomake a better choice regarding the non-terminal
label. On the other hand, the non-binary bottom-up strategy
must simultaneously determine the non-terminal symbol and
the left span boundary of the future constituent once all child
nodes are completed in the stack. Despite having local infor-
mation about already-built subtrees, the bottom-up strategy
lacks global guidance from top-downparsing,which is essen-
tial for selecting the correct non-terminal label. Additionally,
determining span boundaries can be challenging when the
target constituent has a long span, as Reduce#k- L transi-
tions with a high k value are less frequent in the training data
and thus harder to learn. The in-order approach avoids these
drawbacks by predicting the non-terminal label and marking
the left span boundary after creating its first child. In “Exper-
iments,” we will empirically demonstrate that, in practice,

2852 Cognitive Computation (2024) 16:2846–2862

1 3

Table 3 In-order transition sequence and state configurations for generating the TOP representation in Fig. 1(a)

Transition Stack Buffer f

[] [Play, Paradise, by, Coldplay] false

Shift [Play] [Paradise, by, Coldplay] false

NT- IN:PLAY_MUSIC [Play, IN:PLAY_MUSIC] [Paradise, by, Coldplay] false

Shift [Play, IN:PLAY_MUSIC, Paradise] [by, Coldplay] false

NT- SL:TITLE [Play, IN:PLAY_MUSIC, Paradise, SL:TITLE] [by, Coldplay] false

Reduce [Play, IN:PLAY_MUSIC, SL:TITLEParadise] [by, Coldplay] false

Shift [Play, IN:PLAY_MUSIC, SL:TITLEParadise, by] [Coldplay] false

Shift [Play, IN:PLAY_MUSIC, SL:TITLEParadise, by, Coldplay] [] false

NT- SL:ARTIST [Play, IN:PLAY_MUSIC, …, Coldplay, SL:ARTIST] [] false

Reduce [Play, IN:PLAY_MUSIC, …, by, SL:ARTISTColdplay] [] false

Reduce [IN:PLAY_MUSICPlay SL:TITLE by SL:ARTIST] [] false

Finish [IN:PLAY_MUSICPlay SL:TITLE by SL:ARTIST] [] true

NT- L stands for Non- Terminal- L and slot labels have been respectively abbreviated from SL:MUSIC_TRACK_TITLE and
SL:MUSIC_ARTIST_NAME to SL:TITLE and SL:ARTIST

the advantages of the in-order transition system result in sub-
stantial accuracy improvements compared to the other two
alternatives.

Neural ParsingModel

Earlier shift-reduce systems in dependency parsing [15], con-
stituency parsing [7], AMR parsing [39], and task-oriented
semantic parsing [4, 22] relied on Stack-LSTMs for model-
ing state configurations. These architectures are grounded in
LSTM recurrent neural networks [40], which dominated the
natural language processing community until [10] introduced
Transformers. This neural architecture offers a cutting-edge
attention mechanism [41] that outperforms LSTM-based
systems and, unlike recurrent neural networks, can be
easily parallelized. This motivated [16] to design Stack-
Transformers. In particular, they use Stack-Transformers to
replace Stack-LSTMs in shift-reduce dependency and AMR
parsing, achieving remarkable gains in accuracy.

In our research, we leverage Stack-Transformers to repre-
sent the buffer and stack structures of the described transition
systems, employing them to construct innovative shift-reduce
task-oriented parsers. Specifically, we implement the follow-
ing encoder-decoder architecture:

Encoder Top-performing sequence-to-sequence approaches
[11, 27] directly use pre-trained models like RoBERTa [13]
as the encoder in their neural architectures, conducting a
task-specific fine-tuning during training. RoBERTa, short for
“Robustly optimized BERT pretraining approach,” employs
the same transformer architecture as BERT [43] and was pre-
trained on masked word prediction using a large dataset.

Unlike strong sequence-to-sequence techniques, we adopt
a less resource-consuming and greener strategy: we extract

fixed weights from the pre-trained language model
RoBERTaLarge1 to initialize word embeddings, which remain
frozen throughout the training process. Specifically, we use
mean pooling (i.e., averaging the weights from wordpieces)
to generate a word representation ei for each token wi in the
input utterance X = w1, . . . , wn , resulting in the sequence
E = e1, . . . , en .

Next, we define the encoder using a 6-layer transformer
with a hidden size of 256. Transformers utilize a multi-head
self-attention layer with multiple attention heads (four in
our case) to assess the relevance of each input token rela-
tive to the other words in the utterance. The output of this
layer is fed into a feed-forward layer, ultimately producing
an encoder hidden state hi for each inputword (represented as
ei). Therefore, given the sequence ofword representations E ,
the encoding process yields the sequence of encoder hidden
states H = h1, . . . , hn . Figure2 illustrates the transformer
neural architecture.

Decoder with Stack-Transformers The decoder is respon-
sible for generating the sequence of target actions A =
a0, . . . , am−1 to parse the input utterance X according to
a specific transition system S.

We use Stack-Transformers (with 6 layers, a hidden size
of 256, and 4 attention heads) to effectively model the stack
and buffer structures at each state configuration of the shift-
reduce parsing process. In the original transformer decoder
model, a cross-attention layer employs multiple attention
heads to attend to all input tokens and compute their compat-
ibility with the last decoder hidden state qt (which encodes
the transitionhistory).However, Stack-Transformers special-
ize one attention head to focus exclusively on tokens in the

1 https://huggingface.co/roberta-large

2853Cognitive Computation (2024) 16:2846–2862

1 3

https://huggingface.co/roberta-large

Fig. 2 Transformer neural architecture introduced by [10]. Note that
this neural network requires the incorporation of positional encoding
for each input token tomaintain sequential order, and Layer Norm refers
to the layer normalization technique proposed by [42]

stack at state configuration ct and another head solely on the
remainingwords in the buffer at ct . This specialization allows
the transformer to represent stack and buffer structures.

In practice, these dedicated stack and buffer attention
heads are implemented using masks mstack and mbuffer over
the input. After applying the transition at−1 to state config-
uration ct−1, these masks must be updated at time step t to
accurately represent the stack and buffer contents in the cur-
rent state configuration ct . To achieve this, we define how
these masks are specifically modified for each transition sys-
tem described in “Methodology”:

• If the action at−1 is a Shift transition, the first token
in mbuffer will be masked out and added to mstack. This
applies to all proposed transition systems, as the Shift

transition behaves consistently across them.
• When a Non- terminal- L transition is applied, it
affects the stack structure in ct but has no effect on
mstack. This is because attention heads only attend to
input tokens, and non-terminals are artificial symbols not
present in the user utterance.

• For a Reduce transition (including the Reduce#k- L
action from the non-binary bottom-up transition sys-
tem), all tokens in mstack that form the upcoming con-
stituent will be masked out, except for the initial word
representing the resultant constituent (since artificial non-
terminals cannot be considered by the attention heads).

In Fig. 3, we illustrate how these masks represent the content
of the buffer and stack structures and how they are adjusted
as the parser transitions from state configurations ct−1 to ct .

After encoding the stack and buffer in state configuration
ct into masks mstack

t and mbuffer
t (both represented as vectors

with values of −∞ or 0), the attention head zstackt (focused
exclusively on the stack) is computed as follows:

zstackt =
n∑

i=1

αti (hiW
V
d), αti = exp(βti)∑n

k=1 exp(βtk)
,

βti = (qtW
Q
d)(hiW K

d)T√
d

+mstack
ti (1)

where WK
d , WQ

d , and WV
d are parameter matrices unique

to each attention head, d is the dimension of the resulting
attention vector zstackt , andβti is a compatibility function that
measures the interaction between the decoder hidden state qt
and each input token wi (represented by hi). By introducing
the mask mstack

t into the original equation to compute βti ,
this scoring function will only affect the words that are in the
stack at time step t .

Similarly, the attention vector zbuffert (which only affects
input tokens in the buffer in ct) is calculated as follows:

zbuffert =
n∑

i=1

αti (hiW
V
d), αti = exp(βti)∑n

k=1 exp(βtk)
,

βti = (qtW
Q
d)(hiW K

d)T√
d

+mbuffer
ti (2)

The other two regular attention heads zt are computed
as originally described in [10]. All resulting attention vec-
tors are combined and passed through subsequent linear and
Softmax layers (as depicted in Fig. 2) to ultimately select
the next action at from the permitted transitions in state con-
figuration ct , according to a specific transition system S.

Finally, note that this neural architecture is flexible enough
to implement not only the transition systems described in
“Methodology,” but also any shift-reduce parser for task-
oriented semantic parsing.

Training Objective Each shift-reduce parser is trained through
the minimization of the overall log loss (implemented as a
cross-entropy loss) when selecting the correct sequence of

2854 Cognitive Computation (2024) 16:2846–2862

1 3

Fig. 3 Updates to the masks mstack
t and mbuffer

t that reflect the effects of certain in-order transitions on the stack and buffer during the shift-reduce
parsing process illustrated in Table 3

transitions A = a0, . . . , am−1 to generate the gold TOP tree
Yg for the user utterance X :

L(θ) = −
T∑

t=0

log Pθ (at |a<t , X) (3)

where the transition at (predicted in time step t) is condi-
tioned by previous action predictions (a<t).

Experiments

Setup

Data We conduct experiments on the main benchmark for
task-oriented semantic parsing of compositional queries: the
Facebook TOP datasets. The initial version (TOP)2 was
introduced by [4], who annotated utterances with multiple
nested intents across two domains: event and navigation.
This was further extended by [19] in the second version
(TOPv2),3 which added six additional domains: alarm,mes-
saging, music, reminder, timer, and weather. While the first
version presents user queries with a high degree of compo-
sitionality, the extension TOPv2 introduced some domains
(such as music and weather) where all utterances can be
parsed with flat trees. Table 4 provides some statistics of the
TOP and TOPv2 datasets.

2 http://fb.me/semanticparsingdialog
3 https://fb.me/TOPv2Dataset

Furthermore, TOPv2 offers specific splits designed to
evaluate task-oriented semantic parsers in a low-resource
domain adaptation scenario. The conventional approach
involves utilizing some samples from the reminder and
weather domains as target domains, while considering the
remaining six full domains (including event and navigation
from TOP) as source domains if necessary.Moreover, instead
of selecting a fixed number of training samples per target
domain, TOPv2 adopts a SPIS (samples per intent and slot)
strategy. For example, a 25 SPIS strategy entails randomly
selecting the necessary number of samples to ensure at least
25 training instances for each intent and slot of the target
domain. To facilitate a fair comparison, we evaluate our
approach on the training, test, and validation splits at both
25 SPIS and 500 SPIS for the target domains reminder and
weather, as provided in TOPv2. Additionally, following the
methodology proposed by [19], we employ a joint training
strategy in the 25 SPIS setting, wherein the training data from
the source domain is combined with the training split from
the target domain.

Finally, we further evaluate our shift-reduce parsers on a
variant of the TOPv2 dataset (referred to as TOPv2∗). This
variant comprises domains with a high percentage of hierar-
chical structures: alarm, messaging, and reminder. Our aim
is to rigorously test the three proposed transition systems
on complex compositional queries, excluding those domains
that can be fully parsed with flat trees, which are more easily
handled by traditional slot-filling methods.

Evaluation We use the official TOP scoring script for perfor-
mance evaluation, which reports three different metrics:

2855Cognitive Computation (2024) 16:2846–2862

1 3

http://fb.me/semanticparsingdialog
https://fb.me/TOPv2Dataset

Table 4 Data statistics for the
Facebook TOP benchmark

Dataset Domain Training Valid Test Intents Slots %Compos

TOP Event 9170 1336 2654 11 17 20%

Navigation 20,998 2971 6075 17 33 43%

TOPv2 Alarm 20,430 2935 7123 8 9 16%

Messaging 10,018 1536 3048 12 27 16%

Music 11,563 1573 4184 15 9 0%

Reminder 17,840 2526 5767 19 32 21%

Timer 11,524 1616 4252 11 5 4%

Weather 23,054 2667 5682 7 11 0%

We provide the number of queries in the training, validation, and test splits, along with the number of intents
and slots. Additionally, we include the percentage of compositional queries (i.e., utterances parsed by non-flat
trees with depth > 2)

• Exactmatch accuracy (EM),whichmeasures the percent-
age of full trees correctly built.

• Labeled bracketing F1 score (F1), which compares the
non-terminal label and span of each predicted constituent
against the gold standard. This is similar to the scoring
method provided by the EVALB script4 for constituency
parsing [44], but it also includes pre-terminal nodes in
the evaluation.

• Tree-labeled F1 score (TF1), which evaluates the subtree
structure of each predicted constituent against the gold
tree.

Recent research often reports only the EM accuracy; how-
ever, in line with [4], we also include F1 and TF1 scores to
provide a more comprehensive comparison of the proposed
transition systems. Lastly, for each experiment, we present
the average score and standard deviation across three runs
with random initialization.

Implementation Details Our neural architecture was built
upon the Stack-Transformer framework developed by [16]
using the FAIRSEQ toolkit [45]. We maintained consistent
hyperparameters across all experiments, based on those spec-
ified by [16], with minor adjustments. Specifically, we used
the Adam optimizer [46] with β1 = 0.9 and β2 = 0.98,
and a batch size of 3584 tokens. The learning rate was lin-
early increased for the first 4000 training steps from 1e−7

to 5e−4, followed by a decrease using the inverse-sqrt
scheduling scheme, with a minimum of 1e−9 [10]. Addition-
ally, we applied a label smoothing rate of 0.01, a dropout
rate of 0.3, and trained for 90 epochs. Furthermore, we aver-
aged the weights from the three best checkpoints based on
the validation split using greedy decoding and employed a
beam size of 10 for evaluation on the test set. All models
were trained and tested on a single Nvidia TESLA P40 GPU
with 24 GB of memory.

4 https://nlp.cs.nyu.edu/evalb/

Baselines In addition to evaluating the three proposed tran-
sition systems, we compare them against the leading shift-
reduce parser for task-oriented dialogue: the system devel-
oped by [22]. This model builds upon the system by [4],
which uses a top-down transition system and a Stack-LSTM-
based architecture, and enhances it with ELMo-based word
embeddings, a majority-vote ensemble of seven parsers, and
an SVM languagemodel ranker.We also include current top-
performing sequence-to-sequence models in our comparison
[11, 12, 27, 29, 31]. For low-resource domain adaptation, we
compare our models with the enhanced implementation by
[19], which is based on [11] and specifically tested on the
low-resource TOPv2 splits. Lastly, we incorporate the recent
state-of-the-art approach by [33], which employs a language
model enhanced with semantic structured information, into
both high-resource and low-resource comparisons.

Results

High-Resource Setting We first present the evaluation results
of the three described transition systems with Stack-Transfo-
rmers on theTOP andTOPv2∗ datasets inTable 5.Regardless
of themetric, the in-order algorithmconsistently outperforms
the other two alternatives on both datasets. Although the TOP
dataset contains a higher percentage of compositional queries
than TOPv2∗, the in-order parser shows a more significant
accuracy advantage over the top-down parser on TOP (0.49
EM accuracy points) compared to TOPv2∗ (0.13 EM accu-
racy points). The bottom-up approach notably underperforms
compared to the other transition systems on both datasets.

In Table 6, we compare our shift-reduce parsers to strong
baselines on the TOP dataset. Using frozen RoBERTa-based
word embeddings, the in-order shift-reduce parser outper-
forms all existing methods under similar conditions, includ-
ing sequence-to-sequence models that fine-tune language
models for task-oriented parsing. Specifically, it surpasses
the single-model and ensemble variants of the shift-reduce
parser by [22] by 3.22 and 0.89 EM accuracy points, respec-

2856 Cognitive Computation (2024) 16:2846–2862

1 3

https://nlp.cs.nyu.edu/evalb/

Table 5 Average performance across 3 runs on TOP and TOPv2∗ test splits

TOP TOPv2∗
Transition system EM F1 TF1 EM F1 TF1

Top-down 86.66±0.06 95.33±0.07 90.80±0.01 87.98±0.09 94.51±0.03 90.99±0.09

Bottom-up 85.89±0.10 94.86±0.06 90.33±0.05 86.27±0.03 93.56±0.06 89.57±0.02

In-order 87.15±0.01 95.57±0.15 91.18±0.13 88.11±0.07 94.60±0.04 91.11±0.07

Standard deviations are reported with ±. Best scores are marked in bold

tively. Additionally, our best transition system achieves
improvements of 0.41 and 0.05 EM accuracy points over top-
performing sequence-to-sequence baselines initialized with
RoBERTa [27] and BART [12], respectively. The exceptions
are the enhanced variant of [22] (which uses an ensemble
of seven parsers and an SVM language model ranker) and
the two-staged system by [33] that employs an augmented
language model with hierarchical information, achieving the
best accuracy to date on the TOP dataset.

Lastly, our top-down parser with Stack-Transformers
achieves accuracy comparable to the strongest sequence-to-
sequence models using RoBERTa-based encoders [11, 27],
and surpasses the single-model top-down shift-reduce base-
line by [22] by a wide margin (2.73 EM accuracy points).

Low-Resource Setting Table 7 presents the performance of
our approach on low-resource domain adaptation. Across

all SPIS settings, the in-order strategy consistently achieves
the highest scores, not only among shift-reduce parsers
but also compared to top-performing sequence-to-sequence
models. Specifically, the in-order algorithm outperforms the
BART-based sequence-to-sequencemodel by 3.5 and 2.4EM
accuracy points in the 25 SPIS setting of the reminder and
weather domains, respectively. In the 500 SPIS setting, our
best shift-reduce parser achieves accuracy gains of 7.9 and
0.5 EMpoints on the reminder andweather domains over the
strongest sequence-to-sequence baseline. Notably, while the
reminder domain poses greater challenges due to the pres-
ence of compositional queries, our approach exhibits higher
performance improvements in this domain compared to the
weather domain, which exclusively contains flat queries.
Additionally, we include the state-of-the-art scores achieved
by the system developed by [33] by incorporating semantic
structured information into the language model fine-tuning.

Table 6 Comparison of exact
match performance among
state-of-the-art task-oriented
parsers on the TOP test set

Parser EM

(Sequence-to-sequence models)

Rongali et al. [11] + RoBERTa
fine- tuned

86.67

Aghajanyan et al. [12] + RoBERTa
fine- tuned

84.52

Aghajanyan et al. [12] + BART
fine- tuned

87.10

Zhu et al. [27] + RoBERTa
fine- tuned

86.74

Shrivastava et al. [29] + RoBERTa
fine- tuned

85.07

Oh et al. [30] + BERT
fine- tuned

86.00

Shrivastava et al. [31] + RoBERTa
fine- tuned

86.14

(Shift-reduce models)

Einolghozati et al. [22] + ELMo 83.93

Top-down shift-reduce parser + RoBERTa 86.66

Bottom-up shift-reduce parser + RoBERTa 85.89

In-order shift-reduce parser + RoBERTa 87.15

Einolghozati et al. [22] + ELMo + ensemble 86.26

Einolghozati et al. [22] + ELMo + ensemble + SVM-Rank 87.25

Do et al. [33] + RoBERTa+ hierarchical information

fine- tuned
88.18

The first block encompasses sequence-to-sequence models and shift-reduce parsers. In the second block, we
additionally present the results of [22] with ensembling (+ ensemble) and language model re-ranking (+
SVM-Rank), along with a novel approach that fine-tunes a standard RoBERTa language model by integrating
additional semantic structured information (+ hierarchical information). Bold scores denote the best
EM accuracy of each block. Lastly, we indicate with fine- tuned those approaches that utilize pretrained
language models directly as encoders and undergo fine-tuning for adaptation to task-oriented parsing

2857Cognitive Computation (2024) 16:2846–2862

1 3

Table 7 Comparison of exact match performance among top-performing task-oriented parsers on the test splits of reminder and weather domains
within a low-resource setting

Reminder Weather
Parser 25 SPIS 500 SPIS 25 SPIS 500 SPIS

(Sequence-to-sequence models)

Chen et al. [19] + RoBERTa
fine- tuned

− 71.9 − 83.5

Chen et al. [19] + BART
fine- tuned

57.1 71.9 71.0 84.9

(Shift-reduce models)

Top-down S-R parser + RoBERTa 57.39±0.27 79.79±0.19 71.22±1.03 83.19±0.20

Bottom-up S-R parser + RoBERTa 40.45±0.88 68.65±0.39 68.58±0.99 74.13±0.35

In-order S-R parser + RoBERTa 60.56±0.12 79.79±0.27 73.36±0.08 85.44±0.21

Do et al. [33]+RoBERTa+hierar. inform.
fine- tuned

72.12 82.28 77.96 88.08

The first block compiles sequence-to-sequence models and shift-reduce (S-R) parsers. In the second block, we additionally present the results of the
novel approach by [33], which involves fine-tuning a standard RoBERTa language model by integrating additional semantic structured information
(+ hierar. inform.). Bold scores denote the best EM performance of each block on each dataset. Lastly, we indicate with fine- tuned those
approaches that utilize pre-trained language models directly as encoders and undergo fine-tuning for adaptation to task-oriented parsing

Discussion Overall, our top-down and in-order shift-reduce
parsers deliver competitive accuracies on the main Face-
book TOP benchmark, surpassing the state of the art in
both high-resource and low-resource settings in most cases.
Furthermore, shift-reduce parsers ensure that the result-
ing structure is a well-formed tree in any setting, whereas
sequence-to-sequence models may produce invalid trees due
to the absence of grammar constraints during parsing. For
instance, Rongali et al. [11] reported that 2% of generated
trees for the TOP test split were not well-formed. Although
[19] did not document this information, we anticipate a sig-
nificant increase in invalid trees in the low-resource setting.
Finally, it is worthmentioning that techniques such as ensem-
bling, re-ranking, or fine-tuning pre-trained languagemodels
are orthogonal to our approach and, while they may consume
more resources, they can be directly implemented to further
enhance performance.

Analysis

To comprehend the variations in performance among the
proposed transition systems, we conduct an error analysis
focusing on utterance length and structural factors using the
validation split of the TOP dataset.

Utterance Length In Fig. 4 a and b, we present the EM and
labeled bracketing F1 scores achieved by each transition sys-
tem across various utterance length cutoffs. It can be seen that
the bottom-up algorithm yields higher EM accuracy for the
shortest utterances (≤ 5), but experiences a notable decline
in accuracy for longer queries.While less pronounced than in
the bottom-up strategy, both the in-order and top-down algo-
rithms also exhibit a clear decrease in accuracy as utterance
length increases. This outcome is anticipated as shift-reduce

parsers are prone to error propagation: earliermistakes in the
transition sequence can lead the parser into suboptimal state
configurations, resulting in further erroneous decisions later
on. Notably, the in-order approach consistently outperforms
the top-down baseline across all length cutoffs.

Query Compositionality Figure4 c and d depict the EM and
labeled F1 scores achieved by each algorithm on queries with
varying numbers of intents per utterance. We observe that
the in-order transition system attains higher EM accuracy
on utterances with fewer than 3 intents. However, its perfor-
mance onmore complex queries is surpassed by the top-down
approach. A similar trend is evident when evaluating per-
formance using the labeled F1 score: the top-down strategy
outperforms the in-order algorithm on queries with 4 intents.
While this might suggest that a purely top-down approach is
preferable for processing utterances with a compositionality
exceeding 3 intents, it is essential to note that the number
of queries with 4 intents in the validation split is relatively
low (just 20 utterances with 4 intents, compared to 2525,
1179, and 307 utterances with 1, 2, and 3 intents, respec-
tively). Consequently, its impact on the overall performance
is limited. Finally, both plots also indicate that the bottom-up
approach consistently underperforms the other two alterna-
tives, except on queries with 3 intents, where it surpasses the
in-order strategy in EM accuracy.

Span Length and Non-terminal Prediction Figure4e illus-
trates the performance achieved by each transition system on
span identification relative to different lengths, while Fig. 4f
demonstrates the accuracy obtained by each algorithm on
labeling constituents with the most frequent non-terminals
(including the average span length in brackets). In Fig. 4e,
we observe that error propagation affects span identification,
as accuracy decreases on longer spans,which require a longer

2858 Cognitive Computation (2024) 16:2846–2862

1 3

F
1
 s

c
o
re

89.0%

91.3%

93.5%

95.8%

98.0%

SL:
D
ESTIN

AT
IO

N
 (2

.4
)

SL:
LO

C
AT

IO
N
 (2

.4
)

SL:
D
AT

E_T
IM

E (2
.3

)

SL:
SO

U
R
C
E (2

.0
)

SL:
C
AT

EG
O
R
Y_E

VEN
T (2

.5
)

SL:
D
AT

E_T
IM

E_D
EPAR

TU
R
E (3

.0
)

SL:
D
AT

E_T
IM

E_A
R
R
IV

AL
(3

.2
)

Top-down In-order Bottom-up

Non-terminal label (avg. span length)

E
x
a
c
t
M

a
tc

h

85.0%

86.5%

88.0%

89.5%

91.0%

Utterance length cuto

<=5 <=10 <=15 <=20 <=25 <=30 all

Top-down In-order Bottom-up

F
1
 s

c
o
re

95.0%

95.4%

95.8%

96.1%

96.5%

Utterance length cuto

<=5 <=10 <=15 <=20 <=25 <=30 all

Top-down In-order Bottom-up
F

1
 s

c
o
re

40.0%

54.0%

68.0%

82.0%

96.0%

Span length

1 2 3 4 5 6 7 8

Top-down In-order Bottom-up

(a) (b)

(f)

(e)

E
x
a
c
t

M
a
tc

h

34.0%

48.5%

63.0%

77.5%

92.0%

Number of intents

1 2 3 4

Top-down In-order Bottom-up

(c)

F
1
 s

c
o
re

84.0%

87.3%

90.5%

93.8%

97.0%

Number of intents

1 2 3 4

Top-down In-order Bottom-up

(d)

Fig. 4 Performance comparison of the three transition systems relative to utterance length and structural factors

transition sequence to be constructed and are thus more sus-
ceptible to error propagation. Additionally, the bottom-up
transition system exhibits significant accuracy losses in pro-
ducing constituents with longer spans. This can be attributed
to the fact that, while the other two alternatives use a Non-
Terminal- L action to mark the beginning of the future
constituent, the bottom-up strategydetermines the entire span

with a single Reduce#k- L transition at the end of the con-
stituent creation. This approach, being more susceptible to
error propagation, struggles with Reduce#k- L transitions
with higher k values, which are less frequent in the train-
ing data and hence more challenging to learn. Regarding
the in-order algorithm, it appears to be more robust than the
top-down transition system on constituents with the longest

2859Cognitive Computation (2024) 16:2846–2862

1 3

span, indicating that the advantages of the in-order strat-
egy (explained in “Transition Systems for Task-Oriented
Semantic Parsing”) mitigate the impact of error propagation.
Moreover, in Fig. 4f, we observe that the in-order parser
outperforms the other methods in predicting frequent non-
terminal labels in nearly all cases, resulting in significant
differences in accuracy in building slot constituents with the
longest span, such as SL:DATE_TIME_DEPARTURE and
SL:DATE_TIME_ARRIVAL. The only exceptions are slot
constituents SL:SOURCE and SL:CATEGORY_EVENT,
where the bottom-up and top-down algorithms respectively
achieve higher accuracy.

Conclusions

In this paper, we introduce innovative shift-reduce semantic
parsers tailored for processing task-oriented dialogue utter-
ances. In addition to the commonly used top-down algorithm
for this task, we adapt the bottom-up and in-order transition
systems from constituency parsing to generate well-formed
TOP trees. Moreover, we devise a more robust neural
architecture that, unlike previous shift-reduce approaches,
leverages Stack-Transformers and RoBERTa-based contex-
tualized word embeddings.

We extensively evaluate the three proposed algorithms
across high-resource and low-resource settings, as well as
multiple domains of the widely used Facebook TOP bench-
mark. This marks the first evaluation of a shift-reduce
approach in low-resource task-oriented parsing, to the best of
our knowledge. Through these experiments, we demonstrate
that the in-order transition system emerges as the most accu-
rate alternative, surpassing all existing shift-reduce parsers
not enhanced with re-ranking. Furthermore, it advances the
state of the art in both high-resource and low-resource set-
tings, surpassing all top-performing sequence-to-sequence
baselines, including those employing larger pre-trained lan-
guage models like BART.

Additionally, it is worth noting that our approach holds
potential for further enhancement through techniques such
as ensemble parsing with a ranker, as developed by [22],
or by specifically fine-tuning a RoBERTa-based encoder for
task-oriented semantic parsing, as employed by the strongest
sequence-to-sequence models. Finally, incorporating hierar-
chical semantic information, as successfully implemented by
[33], is another avenue for improving our approach.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. We acknowledge the European
Research Council (ERC), which has funded this research under the
European Union’s Horizon 2020 research and innovation programme
(FASTPARSE, grant agreement No 714150), ERDF/MICINN-AEI
(PID2020-113230RB-C21, PID2020-113230RB-C22 and PID2023-
147129OB-C22), Xunta de Galicia (ED431C 2020/11), and Centro de

Investigación de Galicia “CITIC”, funded by Xunta de Galicia and
the European Union (ERDF - Galicia 2014-2020 Program), by grant
ED431G 2019/01

Data Availability The TOP and TOPv2 datasets used during the current
research work are available in the Facebook repositories: http://fb.me/
semanticparsingdialog and https://fb.me/TOPv2Dataset.

Declarations

Conflict of Interest The author declares no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. MesnilG,DauphinY,YaoK,BengioY,DengL,Hakkani-TurD,He
X, Heck L, Tur G, YuD, Zweig G. Using recurrent neural networks
for slot filling in spoken language understanding. IEEE/ACMTrans
Audio Speech Lang Process. 2015;23(3):530–9. https://doi.org/10.
1109/TASLP.2014.2383614.

2. Liu B, Lane IR. Attention-based recurrent neural network models
for joint intent detection and slot filling. In: INTERSPEECH. 2016.

3. Goo C-W, Gao G, Hsu Y-K, Huo C-L, Chen T-C, Hsu K-W,
Chen Y-N. Slot-gated modeling for joint slot filling and intent
prediction. In: Proceedings of the 2018 conference of the North
American chapter of the association for computational linguis-
tics: human language technologies, vol 2 (Short papers). New
Orleans: Louisiana Association for Computational Linguistics;
2018. p. 753–757. https://doi.org/10.18653/v1/N18-2118. https://
www.aclweb.org/anthology/N18-2118.

4. Gupta S, Shah R, Mohit M, Kumar A, Lewis M. Semantic parsing
for task oriented dialog using hierarchical representations. In: Pro-
ceedings of the 2018 conference on empirical methods in natural
language processing. Brussels, Belgium: Association for Compu-
tational Linguistics; 2018. p. 2787–2792. https://doi.org/10.18653/
v1/D18-1300 . https://www.aclweb.org/anthology/D18-1300.

5. Zelle JM, Mooney RJ. Learning to parse database queries using
inductive logic programming. In: Proceedings of the thirteenth
national conference on artificial intelligence - vol 2. AAAI’96.
AAAI Press; 1996. p. 1050–1055.

6. Banarescu L, Bonial C, Cai S, GeorgescuM, Griffitt K, Hermjakob
U, Knight K, Koehn P, Palmer M, Schneider N. Abstract meaning
representation for sembanking. In: Proceedings of the 7th linguistic
annotation workshop and interoperability with discourse. Sofia,
Bulgaria:Association forComputationalLinguistics; 2013. p. 178–
186. https://www.aclweb.org/anthology/W13-2322.

7. Dyer C, Kuncoro A, Ballesteros M, Smith NA. Recurrent neural
network grammars. In: Proceedings of the 2016 conference of the
north american chapter of the association for computational linguis-

2860 Cognitive Computation (2024) 16:2846–2862

1 3

http://fb.me/semanticparsingdialog
http://fb.me/semanticparsingdialog
https://fb.me/TOPv2Dataset
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TASLP.2014.2383614
https://doi.org/10.1109/TASLP.2014.2383614
https://doi.org/10.18653/v1/N18-2118
https://www.aclweb.org/anthology/N18-2118
https://www.aclweb.org/anthology/N18-2118
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://www.aclweb.org/anthology/D18-1300
https://www.aclweb.org/anthology/W13-2322

tics: human language technologies. San Diego, California: Associ-
ation for Computational Linguistics; 2016. p. 199–209 https://doi.
org/10.18653/v1/N16-1024. https://aclanthology.org/N16-1024.

8. Wiseman S, Rush AM. Sequence-to-sequence learning as beam-
search optimization. In: Proceedings of the 2016 conference
on empirical methods in natural language processing. Austin,
Texas: Association for Computational Linguistics; 2016. p.
1296–1306. https://doi.org/10.18653/v1/D16-1137. https://www.
aclweb.org/anthology/D16-1137.

9. Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN. Con-
volutional sequence to sequence learning. In: Precup D, Teh
YW, editors. Proceedings of the 34th International conference
on machine learning. Proceedings of machine learning research,
vol. 70. PMLR; 2017. p. 1243–1252. https://proceedings.mlr.press/
v70/gehring17a.html.

10. VaswaniA, ShazeerN, ParmarN,Uszkoreit J, Jones L,GomezAN,
KaiserU, Polosukhin I.Attention is all you need. In: Proceedings of
the 31st international conference on neural information processing
systems. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.;
2017. p. 6000–6010.

11. Rongali S, Soldaini L, Monti E, Hamza W. Don’t parse, gener-
ate! a sequence to sequence architecture for task-oriented semantic
parsing. New York, USA: Association for Computing Machinery;
2020. p. 2962–2968. https://doi.org/10.1145/3366423.3380064.

12. Aghajanyan A, Maillard J, Shrivastava A, Diedrick K, Haeger M,
LiH,MehdadY, StoyanovV,KumarA, LewisM,Gupta S. Conver-
sational semantic parsing. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Online; 2020. p. 5026–
5035. https://doi.org/10.18653/v1/2020.emnlp-main.408. https://
aclanthology.org/2020.emnlp-main.408.

13. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis
M, Zettlemoyer L, Stoyanov V. Roberta: a robustly optimized bert
pretraining approach. 2019. arXiv:1907.11692

14. Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy
O, Stoyanov V, Zettlemoyer L. BART: denoising sequence-to-
sequence pre-training for natural language generation, translation,
and comprehension. In: Proceedings of the 58th annual meeting
of the association for computational linguistics. Association for
Computational Linguistics, Online; 2020. p. 7871–7880. https://
doi.org/10.18653/v1/2020.acl-main.703. https://aclanthology.org/
2020.acl-main.703.

15. DyerC,BallesterosM,LingW,MatthewsA,SmithNA.Transition-
based dependency parsing with stack long short-term memory.
In: Proceedings of the 53rd annual meeting of the association
for computational linguistics and the 7th international joint con-
ference on natural language processing (vol 1: Long Papers).
Beijing, China: Association for Computational Linguistics; 2015.
p. 334–343. https://doi.org/10.3115/v1/P15-1033. https://www.
aclweb.org/anthology/P15-1033.

16. Fernandez Astudillo R, Ballesteros M, Naseem T, Blodgett A,
Florian R. Transition-based parsing with stack-transformers. In:
Findings of the association for computational linguistics: EMNLP
2020. Online: Association for Computational Linguistics; 2020. p.
1001–1007. https://doi.org/10.18653/v1/2020.findings-emnlp.89.
https://www.aclweb.org/anthology/2020.findings-emnlp.89.

17. Fernández-González D, Gómez-Rodríguez C. Faster shift-reduce
constituent parsing with a non-binary, bottom-up strategy. Artif
Intell. 2019;275:559–74. https://doi.org/10.1016/j.artint.2019.07.
006.

18. Liu J, ZhangY. In-order transition-based constituent parsing. Trans
Assoc Comput Linguist. 2017;5:413–24.

19. Chen X, Ghoshal A, Mehdad Y, Zettlemoyer L, Gupta S.
Low-resource domain adaptation for compositional task-oriented
semantic parsing. In: Proceedings of the 2020 conference on
empirical methods in natural language processing (EMNLP).

Online: Association for Computational Linguistics; 2020. p. 5090–
5100. https://doi.org/10.18653/v1/2020.emnlp-main.413. https://
aclanthology.org/2020.emnlp-main.413.

20. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with
neural networks. In: Proceedings of the 27th International confer-
ence on neural information processing systems - vol 2. NIPS’14.
Cambridge, MA, USA: MIT Press; 2014. p. 3104–3112.

21. Vinyals O, Kaiser L, Koo T, Petrov S, Sutskever I, Hinton G.
Grammar as a foreign language. In: Proceedings of the 28th Interna-
tional conference on neural information processing systems - vol 2.
NIPS’15. Cambridge, MA, USA: MIT Press; 2015. p. 2773–2781.
http://dl.acm.org/citation.cfm?id=2969442.2969550.

22. Einolghozati A, Pasupat P, Gupta S, Shah R, Mohit M, Lewis M,
Zettlemoyer L. Improving semantic parsing for task oriented dia-
log. 2019. arXiv:1902.06000.

23. Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee
K, Zettlemoyer L. Deep contextualized word representations.
In: Proceedings of the 2018 conference of the North Amer-
ican Chapter of the association for computational linguistics:
human language technologies, vol 1 (Long papers). New Orleans,
Louisiana: Association for Computational Linguistics; 2018. p.
2227–2237. https://doi.org/10.18653/v1/N18-1202. https://www.
aclweb.org/anthology/N18-1202.

24. Pasupat P, Gupta S, Mandyam K, Shah R, Lewis M, Zettlemoyer
L. Span-based hierarchical semantic parsing for task-oriented dia-
log. In: Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: Association for Computational Linguis-
tics; 2019. p. 1520–1526. https://doi.org/10.18653/v1/D19-1163.
https://aclanthology.org/D19-1163.

25. Stern M, Andreas J, Klein D. A minimal span-based neural con-
stituency parser. In: Proceedings of the 55th annual meeting of the
association for computational linguistics (vol 1: LongPapers). Van-
couver, Canada: Association for Computational Linguistics; 2017.
p. 818–827. https://doi.org/10.18653/v1/P17-1076. https://www.
aclweb.org/anthology/P17-1076.

26. See A, Liu PJ, Manning CD. Get to the point: summarization
with pointer-generator networks. In: Proceedings of the 55th
annualmeeting of the association for computational linguistics (vol
1: Long Papers). Vancouver, Canada: Association for Computa-
tional Linguistics; 2017. p. 1073–1083. https://doi.org/10.18653/
v1/P17-1099. https://www.aclweb.org/anthology/P17-1099.

27. Zhu Q, Khan H, Soltan S, Rawls S, Hamza W. Don’t parse,
insert: multilingual semantic parsing with insertion based decod-
ing. In: Proceedings of the 24th conference on computational
natural language learning. Online: Association for Computational
Linguistics; 2020. p. 496–506. https://doi.org/10.18653/v1/2020.
conll-1.40. https://aclanthology.org/2020.conll-1.40.

28. Babu A, Shrivastava A, Aghajanyan A, Aly A, Fan A, Ghazvinine-
jad M. Non-autoregressive semantic parsing for compositional
task-oriented dialog. In: Proceedings of the 2021 Conference of
the North American chapter of the association for computational
linguistics: human language technologies. Online: Association
for Computational Linguistics; 2021. p. 2969–2978. https://doi.
org/10.18653/v1/2021.naacl-main.236. https://aclanthology.org/
2021.naacl-main.236.

29. Shrivastava A, Chuang P, Babu A, Desai S, Arora A, Zotov
A, Aly A. Span pointer networks for non-autoregressive task-
oriented semantic parsing. In: Findings of the Association for
Computational Linguistics: EMNLP 2021. Punta Cana, Domini-
can Republic: Association for Computational Linguistics; 2021.
p. 1873–1886. https://doi.org/10.18653/v1/2021.findings-emnlp.
161. https://aclanthology.org/2021.findings-emnlp.161.

30. Oh G, Goel R, Hidey C, Paul S, Gupta A, Shah P, Shah R. Improv-
ing top-k decoding for non-autoregressive semantic parsing via

2861Cognitive Computation (2024) 16:2846–2862

1 3

https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://aclanthology.org/N16-1024
https://doi.org/10.18653/v1/D16-1137
https://www.aclweb.org/anthology/D16-1137
https://www.aclweb.org/anthology/D16-1137
https://proceedings.mlr.press/v70/gehring17a.html
https://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.18653/v1/2020.emnlp-main.408
https://aclanthology.org/2020.emnlp-main.408
https://aclanthology.org/2020.emnlp-main.408
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://doi.org/10.3115/v1/P15-1033
https://www.aclweb.org/anthology/P15-1033
https://www.aclweb.org/anthology/P15-1033
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://www.aclweb.org/anthology/2020.findings-emnlp.89
https://doi.org/10.1016/j.artint.2019.07.006
https://doi.org/10.1016/j.artint.2019.07.006
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://aclanthology.org/2020.emnlp-main.413
https://aclanthology.org/2020.emnlp-main.413
http://dl.acm.org/citation.cfm?id=2969442.2969550
http://arxiv.org/abs/1902.06000
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.18653/v1/D19-1163
https://aclanthology.org/D19-1163
https://doi.org/10.18653/v1/P17-1076
https://www.aclweb.org/anthology/P17-1076
https://www.aclweb.org/anthology/P17-1076
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://doi.org/10.18653/v1/2020.conll-1.40
https://doi.org/10.18653/v1/2020.conll-1.40
https://aclanthology.org/2020.conll-1.40
https://doi.org/10.18653/v1/2021.naacl-main.236
https://doi.org/10.18653/v1/2021.naacl-main.236
https://aclanthology.org/2021.naacl-main.236
https://aclanthology.org/2021.naacl-main.236
https://doi.org/10.18653/v1/2021.findings-emnlp.161
https://doi.org/10.18653/v1/2021.findings-emnlp.161
https://aclanthology.org/2021.findings-emnlp.161

intent conditioning. In: Calzolari N, Huang C-R, Kim H, Puste-
jovsky J, Wanner L, Choi K-S, Ryu P-M, Chen H-H, Donatelli
L, Ji H, Kurohashi S, Paggio P, Xue N, Kim S, Hahm Y, He
Z, Lee TK, Santus E, Bond F, Na S-H, editors. Proceedings of
the 29th International conference on computational linguistics.
Gyeongju, Republic of Korea: International Committee on Com-
putational Linguistics; 2022. p. 310–322. https://aclanthology.org/
2022.coling-1.24.

31. Shrivastava A, Desai S, Gupta A, Elkahky A, Livshits A, Zotov A,
Aly A. Retrieve-and-fill for scenario-based task-oriented seman-
tic parsing. In: Vlachos, A., Augenstein, I. (eds.) Proceedings
of the 17th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pp. 430–447. Dubrovnik,
Croatia: Association for Computational Linguistics; 2023. https://
doi.org/10.18653/v1/2023.eacl-main.32. https://aclanthology.org/
2023.eacl-main.32.

32. Wang S, Shrivastava A, Livshits A. Treepiece: Faster seman-
tic parsing via tree tokenization. In: Bouamor H, Pino J, Bali
K editors. Findings of the association for computational linguis-
tics: EMNLP 2023. Singapore: Association for Computational
Linguistics; 2023. p. 11082–11092. https://doi.org/10.18653/v1/
2023.findings-emnlp.740. https://aclanthology.org/2023.findings-
emnlp.740.

33. Do T, Nguyen P, Nguyen M. StructSP: Efficient fine-tuning of
task-oriented dialog system by using structure-aware boosting and
grammar constraints. In: Rogers A, Boyd-Graber J, Okazaki N
editors. Findings of the association for computational linguistics:
ACL 2023. Toronto, Canada: Association for Computational Lin-
guistics; 2023. p. 10206–10220. https://doi.org/10.18653/v1/2023.
findings-acl.648. https://aclanthology.org/2023.findings-acl.648.

34. Mansimov E, Zhang Y. Semantic parsing in task-oriented dialog
with recursive insertion-based encoder. 2021. arXiv:2109.04500

35. Do D-T, Nguyen M-P, Nguyen L-M. Gram: grammar-based
refined-label representing mechanism in the hierarchical seman-
tic parsing task. In: Métais E, Meziane F, Sugumaran V, Manning
W, Reiff-Marganiec S, editors. Natural language processing and
information systems. Cham: Springer; 2023. p. 339–51.

36. Yamada H, Matsumoto Y. Statistical dependency analysis with
support vector machines. In: Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT). 2003. p. 195–206.

37. Sagae K, Lavie A. A classifier-based parser with linear run-time
complexity. In: Proceedings of the 9th International Workshop on
Parsing Technologies (IWPT). 2005. p. 125–132.

38. Zhu M, Zhang Y, Chen W, Zhang M, Zhu J. Fast and accu-
rate shift-reduce constituent parsing. In: Proceedings of the 51st
annualmeeting of the association for computational linguistics (vol
1: Long Papers). Sofia, Bulgaria: Association for Computational
Linguistics; 2013. p. 434–443. https://www.aclweb.org/anthology/
P13-1043.

39. Ballesteros M, Al-Onaizan Y. AMR parsing using stack-LSTMs.
In: Proceedings of the 2017 conference on empirical methods
in natural language processing. Copenhagen, Denmark: Asso-
ciation for Computational Linguistics; 2017. pp. 1269–1275.
https://doi.org/10.18653/v1/D17-1130. https://www.aclweb.org/
anthology/D17-1130.

40. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.
9.8.1735.

41. Bahdanau D, Cho K, Bengio Y. Neural machine translation by
jointly learning to align and translate. In: Bengio Y, LeCun Y,
editorss. 3rd International conference on learning representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings; 2015. http://arxiv.org/abs/1409.0473.

42. Ba JL, Kiros JR, Hinton GE. Layer normalization. 2016. https://
doi.org/10.48550/ARXIV.1607.06450. https://arxiv.org/abs/1607.
06450

43. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training
of deep bidirectional transformers for language understanding.
In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, vol 1 (Long and Short Papers).Minneapo-
lis,Minnesota:Association forComputational Linguistics; 2019. p.
4171–4186. https://doi.org/10.18653/v1/N19-1423. https://www.
aclweb.org/anthology/N19-1423.

44. Black E, Abney S, Flickinger D, Gdaniec C, Grishman R, Harrison
P, Hindle D, Ingria R, Jelinek F, Klavans J, LibermanM, Roukos S,
Santorini B, Strzalkowski T. A procedure for quantitatively com-
paring the syntactic coverage of English grammars. In: Proceedings
of the 4th DARPA Speech and Natural LanguageWorkshop. 1991.
p. 306–311

45. Ott M, Edunov S, Baevski A, Fan A, Gross S, Ng N, Grangier D,
Auli M. fairseq: a fast, extensible toolkit for sequence modeling.
In: Proceedings of NAACL-HLT 2019: Demonstrations; 2019.

46. Kingma DP, Ba J. Adam: a method for stochastic optimization.
Published as a conference paper at the 3rd international conference
for learning representations 2015. San Diego; 2014.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

2862 Cognitive Computation (2024) 16:2846–2862

1 3

https://aclanthology.org/2022.coling-1.24
https://aclanthology.org/2022.coling-1.24
https://doi.org/10.18653/v1/2023.eacl-main.32
https://doi.org/10.18653/v1/2023.eacl-main.32
https://aclanthology.org/2023.eacl-main.32
https://aclanthology.org/2023.eacl-main.32
https://doi.org/10.18653/v1/2023.findings-emnlp.740
https://doi.org/10.18653/v1/2023.findings-emnlp.740
https://aclanthology.org/2023.findings-emnlp.740
https://aclanthology.org/2023.findings-emnlp.740
https://doi.org/10.18653/v1/2023.findings-acl.648
https://doi.org/10.18653/v1/2023.findings-acl.648
https://aclanthology.org/2023.findings-acl.648
http://arxiv.org/abs/2109.04500
https://www.aclweb.org/anthology/P13-1043
https://www.aclweb.org/anthology/P13-1043
https://doi.org/10.18653/v1/D17-1130
https://www.aclweb.org/anthology/D17-1130
https://www.aclweb.org/anthology/D17-1130
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1409.0473
https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.48550/ARXIV.1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

	Shift-Reduce Task-Oriented Semantic Parsing with Stack-Transformers
	Abstract
	Introduction
	Related Work
	Methodology
	Transition Systems for Task-Oriented Semantic Parsing
	Neural Parsing Model

	Experiments
	Setup
	Results
	Analysis

	Conclusions
	References

